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Abstract

In this paper, a distributed model predictive control (MPC) scheme is established to solve the optimal output consensus
problem of heterogeneous multi-agent systems over directed graphs. Within the framework of MPC, we take both the control
input and the consistent output state as decision variables to formulate a constrained optimization problem. Inspired by the
primal decomposition technique and the push-sum dual average method, a distributed algorithm is designed to address the
optimization problem. The convergence analysis of the proposed algorithm is given, which shows the convergence properties
related to the number of iterations. Then, considering the limited computational resources in practical applications, an
improved MPC-based approach with premature termination is further developed. The closed-loop stability is analyzed under
the suboptimal MPC framework, deriving appropriate terminal conditions to guarantee the asymptotic consensus of multi-
agent systems. Finally, numerical simulations demonstrate the effectiveness of the theoretical results.
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1 Introduction

The collaboration of the multi-agent system has at-
tracted considerable attention in recent years due to
its potential for increasing efficiency. There have been
substantial efforts focusing on this issue, boosting the
development of its applications such as smart grids [1],
sensor fusion [2], multi-vehicle coordination [3], and
resource allocation [4]. One of the fundamental and
significant topics is consensus, which aims to design
appropriate control protocols for agents to reach agree-
ment of common interests. As a pioneering work, the
theoretical framework of the consensus-seeking problem
for multi-agent systems is formulated by [5], where the
individual dynamics are first-order integrators. Sub-
sequently, more complex dynamical models have been
investigated [6,7,8,9] to accommodate diverse real-world
systems. In addition, some work has been extended
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to solve the output consensus problem [10,11,12,13] to
fulfill variety of requirements.

It is noteworthy that the aforementioned investigations
mainly focus on unconstrained systems. However, con-
straints are ubiquitous in practical applications due to
the restriction on machine’s capability and safety or
some other factors. Model predictive control (MPC) is
a well-established framework to deal with constraints
systematically in control problems by solving a con-
strained optimization problem at each time to obtain
applicable control inputs. For multi-agent systems, dis-
tributed MPC (DMPC) can explicitly promote collabo-
ration among the agents. In [14], a DMPC approach is
proposed for the multi-agent system containing coupled
dynamics and independent constraints, where agents’
common final consensus state is set as the origin. In
[15], the collaborative task is extended from consensus
to formation for dynamically decoupled agents, where
the collision avoidance constraints between agents are
also taken into account. Additionally, the global cou-
pled constraints of system states and control inputs are
efficiently handled by [16]. To save communication re-
sources, a distributed event-triggered MPC scheme is
developed by [17], which effectively reduces communica-~
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tion to facilitate practical applications.

Nevertheless, existing studies neglect the consensus
point, or only concentrate on the predefined final state,
thereby compromising the control performance to a
certain extent. To complete the consensus task while
improving the system performance, i.e., achieving the
optimal consensus state of multi-agent systems, an intu-
itive idea is to treat both the final consensus state and
the control input as decision variables to be optimized.
Following this intuition, a DMPC framework for simul-
taneous optimization of final consensus state and linear
quadratic performance is proposed in [18], where the
optimization problem can be effectively solved by [19].
However, this approach cannot deal with constraints
and fails to guarantee rigorous closed-loop stability for
heterogeneous agents. Another attempt is employed by
[20] to address these difficulties, where the performance
is also described as the linear quadratic index and the
incremental subgradient method in [21] is applied. It
should be pointed out that all of the above methods
have stringent requirements in terms of communication
topology. Specifically, [18,19] can only be utilized over
undirected graphs, while the methods in [20,21] require
the communication topology to be either a cycle or a
complete graph, all of which strictly restrict practical
implementation. To the best of the authors’ knowledge,
it still remains an open problem to solve the optimal
output consensus problem over general directed graphs.

Inspired by the aforementioned progress, this paper
deals with the optimal output consensus problem of
heterogeneous multi-agent systems with constraints
over directed graphs. The contributions of this paper
can be summarized as follows. Firstly, a DMPC frame-
work applicable to directed graphs is established, where
both the control input and the consistent output state
are considered as decision variables to formulate a con-
strained optimization problem at each time. In this
way, it is possible to optimize the system performance
and the consensus output simultaneously. Secondly, the
primal decomposition technique and push-sum dual
average are utilized to design the distributed iterative
algorithm to solve the optimization problem under di-
rected graphs. Finally, an improved MPC-based scheme
is further developed with premature termination to
save computational resources. The corresponding ter-
minal conditions have also been derived to guarantee
the closed-loop stability and ensure the asymptotic
consensus of multi-agent systems.

Notation: R™ denotes the set of n-dimensional real col-
umn vectors; R™*™ denotes the set of m x n real ma-

. N T
trices; col{w1, g, , @, } = [@] 2] ,--+ ,z)] denotes

the collection of vectors z; € R™,i € {1,2,--- n};
1 and 0 denote column vectors with all elements of 1
and 0 in proper dimensions, respectively; for a matrix
A, A;; denotes the element located in the ith row and

jth column of A. rand(a,b) represents a random num-
ber with a uniform distribution on the interval [a, b]; for
constant a, |a] denotes the largest integer that is less
than or equal to a; ® denotes the Kronecker product of
matrices; || - - - || denotes the Euclidean norm of vectors;

-, -+ denotes the inner product of vectors; for ma-

trices A € R™*" B € R™*™ ||A|4 £ ATBA.

2 Problem Formulation and Preliminaries
2.1 Problem Statement

Considering a network system containing N heteroge-
neous agents, the dynamics of agent ¢ can be described
as

yi(k) = Cizi(k), (1)
lﬂl(k) S Xi, 'U,Z(k) S Lll-,

where A; € R**" B, ¢ RM>xX™mi (, ¢ R"™" X, is a
convex and closed subset of R, and If; is a convex and
compact subset of R™:.

Assumption 1 For each agent, (A;, B;) is controllable.

The communication between agents can be described
by a directed graph G containing a vertex set V and
an edge set £. A directed edge (i,j) € £ denotes that
agent ¢ can transmit information to agent j directly. The
adjacency matrix A € RV is defined as A;; = 1 if
and only if (j,4) € £ and A;; = 1 holds by nature. The
in-neighbor and the out-neighbor of agent i are defined
as Ni" = {j | (j,i) € &} and NP = {j | (i,j) € &},
respectively. Define v; and p; to represent the out-degree
and in-degree of agent i, that is, v; = Zévzl A;; is the
cardinality of N and p; = Z;v:1 Aj; is the cardinality
of NI, respectively.

Assumption 2 The directed communication topology
graph G is strongly connected.

This paper focuses on the optimal output consensus
problem of the heterogeneous multi-agent system while
ensuring that each individual converges to a stable state.
Specifically, the control objective can be described as
limp o0 (vi (k) — y;(k)) = 0, Vi,j € {1,2,...,N}, and
limy oo (zi(k), wi(k)) = (25,uf), Vi € {1,2,...,N}.
Here, (z¢,u$) represents a steady solution for each
agent, and (2§, u¢,y;) satisfies the equation

(A; — I,,)z{ + Bu; =0, (2a)
O,Z? —Yi = 0. (2b)

It can be followed from the PBH test for controllability
[22, Theorem 12.3] that (2) has non-trivial solutions due
to the controllability in Assumption 1.



Then, the objective of this paper can be transformed to
design proper distributed control method such that

lim z;(k) = z{

()
k— o0

Jim vi(k) = Jlim s (k) =v,

tlim ui(t) =uf, Vie {1,2,...,N},
—00

Vi,je{1,2,...,N},
where (2§, u$,y) satisfies (2). Subsequently, define the

set of steady point and the feasible consensus output of
the multi-agent system as follows.

Definition 1 The set of steady point of each agent is
defined as & = {(uf, z§)|(z¢, us) satisfying (2a)}.
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Definition 2 The set of feasible consensus outputs is de-

finedas? = {y |Zf € X, uf € Uy, (28, us,y) satisfying (2),

Vie{1,2,...,N}.}.

Assumption 3 For each agent, the intersection of U; X
X; and &; is non-empty. Moreover, the set of feasible
consensus outputs ¥ is non-empty.

2.2 MPC for Optimal Output Consensus

In what follows, the MPC framework will be utilized
to enable agents to plan and reach the optimal steady
consistent output by negotiation. Assume that ¢ is the
real time of the kth prediction, 7 is the finite predic-
tion horizon, and At = tyy; — t) is the control period
satisfying 0 < At < 7. Then, at any time t;, recalling
the constraint on the steady state in (2), an additional
constraint on the last predicted state will be involved to
force the system to reach a steady state in &, i.e.,

oy (Tte) = Aizi(Ttr) + Biwi(T|tr),
y(Tltr) = Ciwi(Tltr),

where u; (7T |t;) and x; (7T |t) represent the predicted in-
put and system state of agent i at time instant T + ¢x.
Correspondingly, define the cost function of each indi-
vidual as

T_

;-.

[lzi(eft) = i (T100)11%

t=0
+ [l (Eltr) — wi(Tte) 17

where @); and R; are positive definite weighting matri-
ces, and Ul(tk) = COl{ui(O|tk)a u1(1|tk)a s 7uZ(T‘tk)}
On this basis, at each time ¢, consider the following op-
timization problem within the prediction horizon 7T .

Problem 1 At each time ty, with the given initial state
z;(0)tg) = x;(tx) € X;, the global optimization problem
is formulated as

min  J(U(¢ =
uiz,,) TUE)

s. t. LUZ(]{/’ + 1|tk) = A;x (k‘|tk) + Biui(k|tk), (3&)
yi(kltr) = Cix;(kl[tr), (3b)
x;(klty) € X ke {0,1,...,T}, (3c)
w;(kltg) € U,k e {0,1,..., T —1}, (3d)
xl(T|tk) = Ax (T|tk> + B; UZ(T|tk>, (36)
vi(Tltk) = Cixi(Ttr) = y(tr) € %, (3f)
x;(0)tr) = x;(tx), 1 € {1,2,...,N}, (3g)

where U(ty) = co{U1(t), Ua(tr), ..., Un(tr)}.
Remark 1 The equations (3e)-(3f) are additional ter-
minal constraints to restrict the final output y;(T|ty) to
be consistent in the prediction horizon T, which play an
important role to design the algorithm and guarantee the
stability of the closed-loop system.

Assumption 4 The prediction horizon T is large
enough such that all the feasible consensus output in
% can be achieved by every agent. In other words, for
ally € &, there exists a feasible control input sequence
col{u;(0),u;(1),...,u; (T — 1)} in the relative interior
of U; such that y;(T) =y for each individual.

3 Distributed Optimization-Based Algorithm

Solving the optimization problem (3) in a distributed
manner is a challenging task for two reasons. First,
both the control input U; and the consistent output y
are decision variables, while y is coupled in the con-
sensus constraint (3f) between agents. Second, agents
are only allowed to communicate through a directed
graph, which cannot be handled by existing methods
such as [18,19,20,21]. In this section, we overcome these
difficulties to design a fully distributed algorithm.

3.1 Primal Decomposition and Algorithm Design

Before designing the algorithm to solve (3) in the MPC
scheme, the primal decomposition is first performed for
Problem 1 to explore its useful properties.

For any y(t;) € %, define a new function for each agent

fily(ty)) = min J;(Ui(tr)), s.t.(3a) = (39),

Ui (tx)
where y(tx) and U;(tx) can be viewed as independent

variables in the cost function owing to (3e)-(3f). Then,
the optimization problem (3) can be rewritten as

min F(y i (yi(t)
y(tn) Zf Yillk

s.t. yl(tk) = y(tk) eX.

(4)

After solving (4) to obtain the optimal consensus out-
put y*(tx), the corresponding optimal control input



sequence U (tx) of each agent can be easily calculated
by solving the constrained quadratic optimization prob-
lem (3) with y(tx) = y*({x) using existing methods such
as quadratic programming [23,24,25]. In what follows,
the distributed approach to solve (4) will be investi-
gated. Considering the problem formulation, there have
been some distributed (sub)gradient-based methods
[26,27,28,29]. However, none of these results clarify how
to obtain specific information about the (sub)gradient
of the objective function. For the sake of designing
the subgradient-based algorithm to solve the practi-
cal problem (4), the following observations specify its
subgradient information and more properties.

Proposition 1 The cost function f;(y) defined in (4) is
a convex function. For a given y, the subgradient of f;(y)
is given by the Lagrange multiplier \; corresponding to
the constraint (3f).

Proof. For simplicity, the notion (¢) is omitted in this
proof. Define the Lagrange function of each agent as

where ); is the Lagrangian multipliers. Then, consider
the dual function

di(Niyy) = UmEl% Li(Ui,y, \i),

where %; is the set of constraints on the control input
Ui as % = {U; = col{u;(0),u;(1),...,u;(T — 1)} €
R™:T |satisfying(3c), (3d)}. Recalling (3f) together with
Assumption 3, it follows from [30, Proposition 6.2.3] that
the strong duality holds, resulting in

fily) = maxd;(Ai,y).

i

Subsequently, Vi € %,y € # and the Lagrangian mul-
tiplier \; corresponding to j, there has

It follows from [30, Section 4.2] that \; satisfies the def-
inition of the subgradient of f;(y) at . Finally, defin-
ing h;(X\;) = ming, {J;(U;) — N\ 4(T)} and noticing
fi (73) = maxy, {h7()\1) + )Jgj}, then, for any given fea-
sible states 91 and 2 and 0 < 6 < 1, there has

fi(091 + (1= 0)3j2) = max {hi(N) + A 091 + (1 — 0);

= max {Q(hi(&) +A 1) + (1 6) (hi(Ai) + A 02) }
§9rn)\ax {hL()\z) + A4T731} +(1-90) mA%X{hi(Ai) + Az‘T?jQ}’
=0fi(51) + (1 — 0)32.

Therefore, it can be concluded that f;(y) is convex with
respective to y, which completes the proof. O

Proposition 2 There exists a scalar o; > 0 such that

lgiW)Il < o, Ygi(y) € 0fi(y), Yy € ¥.

Proof. Since both U; and X; are convex, and U; is com-
pact for each agent, it follows from (2) and Definition 1
that % is compact and convex. Then, it can be concluded
that the optimal solution set is non-empty and the sub-
gradient of f; is bounded. In other words, there exists a
scalar o; > 0 which allows the desired conclusion. O

Remark 2 The above analysis clarifies that the subgra-
dient O f;(ty) is the Lagrange multiplier \; associated with
the constraint (3f), which can be obtained by solving the
Karush-Kuhn-Tucker conditions [30, Proposition 6.2.5]
condition for a given y(ty) in practice.

After obtaining the subgradient information 9 f;(y(tx)),
the subgradient-based distributed algorithm is designed
in Algorithm 1. Then, (4) can be addressed at each time
tr, to obtain y*(t). The detailed analysis of the conver-
gent properties for the proposed algorithm is provided
in Theorem 1.

Remark 3 The proposed Algorithm 1 is inspired by the
dual average method [31] combined with the push-sum
technology in [28]. The convergence analysis of Algo-
rithm 1 in Theorem 1 will play an important role to over-
come these drawbacks and ensure the stability of the pro-
posed MPC-based method, and the detailed discussion will
be provided in Section 4. Compared with other existing
methods, the convergence properties of these algorithms
in [26,27,29] cannot work for this scenario, which fail to
devise termination conditions to give theoretical guaran-
tees.

Remark 4 It is possible to use the algorithm in [28] to
solve the considered optimization problem (4) within the
prediction horizon T, however, it has some drawbacks
compared with the proposed Algroithm 1. Specifically, in
[28], the subgradient oracle Of; is driven by the sequence
gl in step (5b), while its convergence cannot be guar-
anteed. Although the improvement is discussed in [28],
where more additional variables need to be introduced,
which increases the resource burden. In contrast, in this
paper, the subgradient \; from f;(y) is used directly in
(5b) with a rigorous convergence analysis. Additionally,
Theorem 1 shows that the constant factor in the conver-
gence rate of Algorithm 1 has been tmproved compared to
that in [28].



Algorithm 1 Directed Optimal Output Consensus Al-
gorithm within MPC Framework

Initialize initial value £ € R",nY = 1,40 e #, 30 € ¥,

0 (0] .
%‘_, %7 jEN™ v>0,and g = 0 for the ith agent.
1: repeat
~
Qg = \/ﬁa (52)
q
grt=3%" V—J + A, (5b)
JjENn J
q+1 _ n]q
nitt = Z -, (5¢)
jenin 7
g+ = arg min {0 g+ L), (s
¢ €Y 77;1+1’ i ag i s
g+t _ _ 49 ¢ L
AR Sy ST — ) oe
2: communication with neighbors i—q and %q7
3 setqg=gq+1;

4: until satisfying the predefined termination
condition T;(y?, ™) < 0;

5: return the optimal consensus output y; (tx) = y7.

6: compute the optimal control input U} (¢) by (3).

Theorem 1 Concerning the optimization problem (4)
at time ty, the solution sequences {y!,q=0,1,...} gen-
erated by (5) of Algorithm 1 satisfy that

N
0< F(y!) — F(y*) <—=[(2m1 +4M)oy + 0>y +
Va
12— 2 )Noy(ms +ms), (6)
- — ——=)Noy(ma + ms3),
NG Y (m2 3
4y M o
ly? — 2l <=, VijeV, (7)

N

where o, M, my1, ma, m3 are positive constants, as speci-
fied in the proof.

Proof. The proof is given in Appendix A. O

Algorithm 1 shows that the optimal consensus output
problem within finite horizon 7 can be solve in a dis-
tributed manner. It should be noted that in Step 4 of
Algorithm 1, the termination condition has been given
as a general form Y (y?, y? ™), which plays an important
role in practical applications. More discussions will be
provided in the next subsection under the MPC scheme
to analyze the steady performance of agents.

2||1/*H2}
gl

3.2 Distributed Optimization with Premature Termina-
tion

Within the MPC framework, Problem 1 can be
solved and the first portion of the optimal solution
u} (7|tr), T € [tk,tks1) can be implemented as the real-
time input. Theorem 1 shows that the iterative Algo-
rithm 1 ensures a consistent output when the number of
iterations ¢ tends to infinity, i.e., limg—, o0 (yf — y?) =0,
Vi,j € {1,2,...,N}. However, in practice, there is
usually a high demand for real-time performance of im-
plementation with limited resources, which may restrict
agents to perform only finite iterations. Therefore, the
designed iterative algorithm requires an appropriate
termination condition to maximize the consensus
accuracy and guarantee the closed-loop stability of sys-
tems with limited computational power. To illustrate
the pattern clearly, the following Figure 1 shows the
execution of the MPC-based algorithm.

Network

x;(0]tx) = x;(tx) and g = 0

)
setg=q+1 .
receive

Check terminal condition

Update y?“

(ti) by (5

Output y; (t) = ¥ (1)
Compute U;(ty) by (3)

Select the first portion u; (z|ty),
T € [ty, ty41) as the real-time input

and obtain x;(7), T € [t trs1] /

Figure 1. The execution of the MPC-based algorithm

Then, the MPC-based algorithm with premature termi-
nation is shown in the following Algorithm 2.

Then, the closed-loop stability of the multi-agent system
will be discussed in the next section to demonstrate the
effectiveness of the improved MPC-based algorithm.

Remark 5 The implementation of the aforementioned
MPC-based approach is shown in Figure 1 and Algorithm
2, where (8a) and (8b) are the specific termination con-
ditions in Step 4 of Algorithm 1 to make it terminate
prematurely.



Algorithm 2 MPC-based Optimal Output Consensus
Algorithm with Premature Termination

Initialize initial value x;(0|t;) = x;(t), §0 € R", n?
- 0
1, y??y? € @7 fl(y:(t—l)) = fl(yz)’ yJ7 v Y > 0

and ¢ = 0 for the ith agent at each update ‘time tr
0,At,2At ...

1: repeat
2: implement (5)

q q
3: communication with neighbors S M and

O fA(ty), where O f3(tx) = fu(y?(t4)) — fi (42 (o)
4: set q=q+1;

5: until satisfy the terminal conditions

wofit) + S o) <0, (Sa)
JEN i
4\7/];4 <c(ty), (8b)

where £(¢x) is a monotonically decreasing function
satisfying lim;, o0 €(tr) = 0, and w; > 2;
6: set y(tx) = vy (tx) and compute U} (tx);
7: select the first portion u;(T‘tk), T € [tk,tky1) as
the real-time input.
8: set ty = ty41 and return to step 1;

4 Stability Analysis

Before proceeding to the discussion on the steady perfor-
mance of the multi-agent system, the suboptimal MPC
scheme [32] will be firstly introduced, which is essentially
the basis of Algorithm 2. Furthermore, the correspond-
ing intuition for the terminal conditions (8a)-(8b) will
be explained.

Consider the case that Algorithm 1 stops at the finite
Gth iteration at 23 resulting in the dlfferent yl, ag, z¢,
the control input w; (T|tk), 7€{0,1,...,7 —1} and the
system state x?(7|tk)7 7 € {0,1,...,T} of each agent.
Then, set the candidate sequences at the next time 41

as G (trr1) = vl (tr),

£

i (Tlthsn) = Irlte), if7 € [topr,te +T)

ATk G(ty), T €[+ Tother +T)
xd(
Z(

JE“(TH]C 1): T‘tk), ifre [tk+1,tk+7-]

P te), AT E€[th+T +1,th +T]
which can be verified that they are feasible solutions of
(3) at tx4+1. Then, there exists

tpp1+T—1

e

[z (rltas ), + New(rlter) 1%,

T=tk+1
t+T—1 5 }
-y [ne;mtk)na+||ezi<v|tk>%z,,}} (9)
T=t)
N tpp1—1 B }
—Z{ > [led et +|ez¢<7tk>||%i}}
= T=t}

<0,
where €, (T |tk+1) fz( tit1) = 25 (th41)s Eua(Tltrs1) =
i (T[tr1) = U5 (trg), €0 (Ttr) = xf(ﬂtk) — Z¢(tx), and
el (tlty) = ul(ty) — ui( |tr). Referring to the subopti-
mal MPC scheme [32], the above inequality (9) shows
the improved property of the objective function, which
is significant to guarantee stability. Thus, a termination
condition is required to be established for testing the
improvement. Then, considering the communication be-
tween the agents, a distributed condition (8a) is designed
in Algorithm 2 to determine whether the improved prop-
erty (9) is satisfied or not. And the detailed verification
is summarized in the proof of Theorem 2.

However, due to the finite iteration ¢ of Algorithm 1,
it will cause agents to converge to different equilibrium
points, thus failing to achieve consensus output, i.e.,
y; # yj for some i # j. To overcome this dilemma, it
is useful to recall the property of Algorithm 1. It fol-
lows from (7) that the difference between the consensus
output y; will decrease as the iteration increases. Intu-
itively, it is possible to consider the terminal condition
(8b) consisting of an upper bound £(t;) to restrict the
difference between the output of the agents, which sat-
isfies ||y (tx) — i (tr)|| < e(ty) — 0 as t, — oo. Then,
the asymptotic convergence of the consensus output can
be guaranteed.

The above observations clarify the inspiration and im-
portance of terminal conditions (8a)-(8b). Then, the
closed-loop stable analysis of Algorithm 2 is provided in
the following theorem.

Theorem 2 The output consensus of the multi-agent
system (1) can be achieved asymptotically by using Algo-
rithm 2.

Proof. First, define

qu(tk) = COl{Off(tk), Ofg(tk)7 ey Qfl%(tk)},
Vq(tk) = wloff(tk) + Z %Qf;l(tk), 1€V,

2
JEN®

and VI(t;) = col{V{!(tx), Vi (tr), ..., Vi (tr)}. Clearly,
V(t) can be written as VI(t;) = DOf4(ty,), where D
can be proved to be a diagonal dominate matrix owing



to w; > 2. Therefore, D is an invertible matrix and all
elements of D~! are non-negative due to the Cramer’s
rule [33, chapter 0.8.3]. Then, it follows from (8a) that

N
D Ofit) =1TOf(ty) =1TDTIVI(t,) <0, (10)

i=1

which indicates the improved performance (9) and en-
sures each individual to reach its y; asymptotically.
Recalling (7), then, it can be concluded that (8b) en-
sures limy, o0 (yf (tx) — yg(tk)) =0, Vi,j € V, thereby
enabling the multi-agent system to achieve consensus
asymptotically. O

Remark 6 There are two termination conditions that
need to be checked in (8). As described above, (8a) indi-
cates the improvement of the system performance, and
(8b) ensures that the convergence of the consensus out-
put. For the upper bound (ti) in (8b), for example, it
t:—?—l

Then (8b) can be replaced by q¢ > %?H) owing to

£
(7). Moreover, if the communication graph is a complete
graph, then there exists at least one node that has access
to O fi(tx) of all agents, and the performance condition
(8a) can be replaced by Zf;l Ofi(te) < 0 to be easily
checked.

can be set as e(ty) = M with constant eg > 0.

Remark 7 In practice, there is a trade-off in the num-
ber of iterations q at each prediction time. In general,
the larger q is, the greater the accuracy of the solution
obtained by Algorithm 1, which can enable the agents to
take less time ty, to achieve consensus. However, consid-
ering the limitation on computational resources, (8) gives
a lower bound on the number of iterations that guaran-
tees the asymptotic consensus output. Besides, when the
agents’ outputs are close (which may happen when the
time ty is large), the decentralized MPC scheme can be
established with fized y;, i € {1,2,..., N} to further con-
serve resources.

Remark 8 If the restriction of the finite iteration num-
ber is not considered in the ideal case, that is, Algorithm 1
can execute the infinite iterations to converge to the opti-
mal solution y} (ty), UF (tx), then the termination condi-
tion (8) of Algorithm 2 can be neglected. In this way, Al-
gorithm 2 will degenerate into the standard MPC method
and the closed-loop stability of the system can be simi-
larly ensured by the previous analysis, which is omitted
here for brevity.

5 Simulation Example

In this section, the effectiveness and superiority of the
proposed algorithm will be verified by testing it on dif-
ferent scenarios.

Qa e@
Oaadiihaney

Figure 2. Communication topology of agents

Part I. First, the proposed algorithm is applied to solve
the optimal formation problem for six agents under a
directed topology as shown in Figure 2.

Suppose the system contains three agents i € {1,2,3}
with first-order dynamics

pl(k + 1) = pi(k) + (Zul(kz) (11)
and three agents with second-order dynamics

pi(k +1) = pi(k) + §;vi(k), (12)

vi(k +1) = vi(k) + iui (k)
for i € {4,5,6}, where p; = [pui,pyi]’ € R% v, =
[Vzi, Vyi] T € R2 u; = [ugi, uy;] T € R? and §; is the sam-
ple period, i € {1,2,...,6}.

Set p; as the output y;, which can be regard as the phys-
ical position of each individual. The goal is to complete
the optimal formation task, and the constraint (3f) is
modified as y;(T|tx) = y(tx) + dei, where d.; denotes
the relative position between agent ¢ and the consis-
tent output in the desired formation pattern. Assume
the formation pattern is defined as [d.1,dca,. .., de] =
[(_17 \/g)T7 (_2» 0)T7 (_1» _\/g)T7 (17 \/g)—rv (2a O)Tv

(1,—+/3)T], which forms a regular hexagon. Then, as-
sume the constraints on system outputs and control
inputs are p; € P; £ {pi|[-6,-6]" < p; < [6,6]"}
w, € U = {wi][-3,-3]T < w; < [3,3]T}, respec-
tively. The weighting matrices are set as ; = I» and
R; = 0.11,, and other auxiliary parameters are set as
v =01, e(tr) = oo & = 0, and yf = 57 = 0.
The initial state of each individual is set as p,;(0) =
rand(—6, 6), p,:(0) = rand(—6,6), and the sample pe-
riod is defined as ¢; = rand (0.8, 1.0)s, while the predic-
tion horizon is 7 = 8 and the control period is At = 1.

The output of and the control input of the multi-agent
system are recorded as shown in Figure 3. It can be seen
that agents reach the desired output state rapidly, while
the control inputs are damped quickly, both of which
satisfy the saturation constraints. The spatio-temporal
trajectories of agents generated by the proposed algo-
rithm are shown in Figure 4, which illustrate the efficacy
of the MPC-based method.

To show the effectiveness of the premature termination
(8), the implementation of Algorithm 2 without this pre-
mature termination is simulated for comparison, where
the stopping condition is set as [y — y?*"|| < e;. Here,
two cases of e; = 107! and e; = 107 are considered.
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Figure 3. Output and control input of each agent

When e; = 107!, agents fail to accomplish the required
formation due to the large error caused by the aggressive
stopping condition. On the contrary, when e; = 1072,
both of this case and the proposed Algorithm 2 accom-
plish the formation task. However, the total number of
iterations of this case is gy = 9097, which is much
larger than the proposed Algorithm 2 with ¢y, = 1089
since the stopping condition is conservative. The com-
parison result shows that the proposed Algorithm 2 with
premature termination can effectively reduce the num-
ber of iterations without loss of control performance,
thereby demonstrating its effectiveness.

Part II. To test the algorithm comprehensively, a batch
of random networked systems are simulated for the
optimal consensus problem. Consider the cases where
the total number of agents are N = 60 and N = 120,
and randomly generate 100 directed connected graphs
for both cases. On this basis, consider the dynamics of
the individuals are all (11), or all (12), or a randomized
mixture of (11) and (12), where the dimension of the
control input m = 1 and m = 2 are taken into account,
respectively. For comparison, other control schemes will
be considered to show the superiority of the proposed
algorithm. Here, two system transformation-based con-
sensus methods, namely [6] (STC-I) and [7] (STC-II)
are involved. Then, define the consensus time instant

o N N
7 satisfying ||Zi=1 ijl Aij(pi(y) — pj(y))“ <
1073, and the performance cost function as J =

SN ST I Ailpi(t) — pi ()11, + (81, ]

The comparison results are shown in Figure 5, where
the average time and average cost of each case are ob-
tained by averaging the consensus time 7 and the per-
formance cost J of 100 random networks, respectively.
Simulation results demonstrate that the proposed algo-
rithm has better consensus performance.

6 Conclusion

In this paper, the optimal consensus output problem of
multi-agent systems over directed graphs is investigated

o Initial position
% Final position

-6 4 ) 0

Figure 4. Spatio-temporal trajectories of agents.
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Figure 5. Comparison between different methods.

within the DMPC framework. Drawing on the primal
decomposition technique and the push-sum dual average
method, an iterative algorithm for directed graphs is first
given to solve the optimization problem at each time.
Furthermore, a finite iteration MPC-based approach is
established, enhancing the effectiveness in practical ap-
plications. The stability of the improved algorithm is
analyzed using suboptimal MPC theory, deriving termi-
nal conditions to guarantee asymptotic consensus of the



multi-agent system. The theoretical results and the su-
periority of the proposed algorithm are finally verified
by numerical simulation examples.
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A Proof of Proposition 2

Before proceeding to the proof, some useful definitions
and lemmas are prepared.

Definition 3 For \! € afl( ) and N € 9f;(7), define

pl = %Zi\;l)‘;‘%ﬁq* sz 1A

It = argmingeq { (0 %, o + Lyl

gt = argmingew { (200 8% aq) + 2 lyl*}-

Lemma 1 [28, Lemma 4.3] For any ¢ € {1,2,...,N},
+1

there holds |57 — ]| < ag-1 || — 20, 8°

Lemma 2 [28, Lemma 4.2] Consider the weighted ad-

jacency matrix A defined as [A] = d%-’ if j € Ni2 a

[fl} ;; = 0, otherwise. Define M? = ZNzl [/\‘1} §O/T]q+1

./\/lq — OZ] 1([ Aa—s— 1} _¢q>>\s/nq+l ./\/lq _

0 Z; 1 (qf)q)\“’ — 'i ))\s/nq+1 which
M < o, M) < ma. M) < s with the posi-
tive scalars ml, msa, ms. Then, for M = mq 4+ mo + mg,

= 2o Bl = M+ MG+ ME|| < M.

satisfy

Lemma 3 Con&dering Qs = there has

) 1 \/s+1’
() i os1 =g 30 5 < 2
1, _ Vot L
<b){1aq g S ,I\[7
q s q
(C)E =1 5T =3 slsf—q(?’_ﬁ)
Proof. The conclusion (a ) holds due to the fact that

1 — \} < % 1, f+ﬁ’ while (b) holds owing

to g > 0. As for (c), there holds that 1

11+ ff Jeds) =2(3-2). O

Lemma 4 [31, Lemma 2] For the optimal solution y*,
there has Y 1_ (8%,¢° — y*) < %23:1 as_1]|8%1* +
Ly,

Sléf_

Then, the proof of Proposition 2 is presented as follows.

First, recalling the update rule (5e), there has y! =

1 q

g 2us=1 g7, and one can obtain

0< F(y!) - F(y*) <= Z (F(5) - F(y™) (A1)

lyi =yl <= Z 197 — 3. (A.2)

By Lemma 1 and Lemma 2, there has

€g+1 q
157 = ¥ < agor || 2og = D B°|[ < Mag—1, (A3)
1; s=0
and (|57 — gIIl < 167 — 0l + 177 — 07 < 2May_1.

Define Fl =

LS (F(5) — F(§)), which satisfies

1< o 1<
< aZNpHyf — 55l < 2041 MNp- > 2May,
s=1

< 4pMN~/\/q. (A4)

Furthermore, it follows from (A.2) that

1, . 1<
lyf =l < =D Mg -5l < = > 2Magy.
qS:l qs:l

Then, utilizing Lemma 3 (a)-(b), the desired conclusion
(7) can be proved.

Recalling Definition 3 and according to the Chain Rule

[30, Proposition 4.2.5], there has B = %Bq. Then, simi-
lar to the process in Lemma 2 and (A.3), there holds

- 5 ma ms3
5] — ¢ < ag—1(m1 + ra + 7)

Defining F3* = D Z;Vd(;\j, i3 — 1°), there has

n 1 L& XSS 7S
<=3 5 IXlgs — ¢l
q s=1j=1
1 1 mo ms
<PN= s i(m +?+?)- (A.5)

Moreover, defining F = % 1, Z;\;(S\j, P
recalling Lemma 4, there holds

Fy <N- ( Zaa 8% )17+ lly*2>- (A.6)
Qq

_1 (F(55) -

—y*) and

Then, for F = i F(y*)), there follows

FQ §F2A+FQB7



2
— ——~vpN(mg +m
i (m2 +mg3)
v

(27me1 +yNp? + 2N7> (A7)

1
< p 3ypN(mg + ms3)

1
_A'_i
Va

by using Lemma 3 (¢). Finally, combing (A.1), (A.4) and
(A.7), the desired conclusion (6) has been proved. O
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