Publications

A complete list of my publications can be found at Google Scholar. Please let me know if you encounter any issues downloading them.

Selected Journal Papers|代表性期刊论文

  1. Achieving Violation-Free Distributed Optimization under Coupling Constraints
    Changxin Liu, Xiao Tan, Xuyang Wu, Dimos V. Dimarogonas and Karl H. Johansson. Submitted.

  2. Enhancing Privacy in Federated Learning through Local Training
    Nicola Bastianello, Changxin Liu and Karl H. Johansson. Submitted.

  3. Federated Cubic Regularized Newton Learning with Sparsification-Amplified Differential Privacy
    Wei Huo, Changxin Liu, Kemi Ding, Karl H. Johansson and Ling Shi. Accepted to Automatica, 2025.

  4. Asynchronous Distributed Optimization with Delay-Free Parameters
    Xuyang Wu, Changxin Liu, Sindri Magnusson and Mikael Johansson. Accepted to IEEE Transactions on Automatic Control, 2025.

  5. Distributed Model Predictive Control for Optimal Output Consensus of Multi-Agent Systems over Directed Graphs
    Nan Bai, Qishao Wang, Zhisheng Duan and Changxin Liu. Automatica, 178, 112381, 2025.

  6. A Continuous-Time Violation-Free Multi-Agent Optimization Algorithm and its Applications to Safe Distributed Control
    Xiao Tan, Changxin Liu, Dimos V. Dimarogonas and Karl H. Johansson. IEEE Transactions on Automatic Control, 70(8): 5176-5189, 2025.

  7. Constrained Optimization with Decision-Dependent Distributions
    Zifan Wang, Changxin Liu, Thomas Parisini, Michael M. Zavlanos and Karl H. Johansson. IEEE Transactions on Automatic Control, 70(8): 5114-5128, 2025.

  8. A Robust Distributed MPC Framework for Multi-Agent Consensus with Communication Delays
    Henglai Wei, Changxin Liu and Yang Shi. IEEE Transactions on Automatic Control, 69(11): 7418-7432, 2024.

  9. Distributed Empirical Risk Minimization with Differential Privacy
    Changxin Liu, Karl H. Johansson and Yang Shi. Automatica, 162, 111514, 2023.

  10. Decentralized Composite Optimization in Stochastic Networks: A Dual Averaging Approach with Linear Convergence
    Changxin Liu, Zirui Zhou, Jian Pei, Yong Zhang and Yang Shi. IEEE Transactions on Automatic Control, 68(8): 4650-4665, 2022.

  11. Self-Triggered Adaptive Model Predictive Control of Constrained Nonlinear Systems: A Min-Max Approach
    Kunwu Zhang, Changxin Liu and Yang Shi. Automatica, 142, 110424, 2022.

  12. Accelerated Dual Averaging Methods for Decentralized Constrained Optimization
    Changxin Liu, Yang Shi, Huiping Li and Wenli Du. IEEE Transactions on Automatic Control, 68(4): 2125-2139, 2022.

  13. Stabilizing Terminal Constraint-Free Nonlinear MPC via Sliding Mode-Based Terminal Cost
    Daxiong Ji, Jie Ren, Changxin Liu and Yang Shi. Automatica, 134, 109898, 2021.

  14. Resource-Aware Exact Decentralized Optimization Using Event-Triggered Broadcasting
    Changxin Liu, Huiping Li and Yang Shi. IEEE Transactions on Automatic Control, 66(7): 2961-2974, 2021.

  15. A Unitary Distributed Subgradient Method for Multi-Agent Optimization with Different Coupling Sources
    Changxin Liu, Huiping Li and Yang Shi. Automatica, 114, 108834, 2020.

  16. Distributed Event-Triggered Gradient Method for Constrained Convex Minimization
    Changxin Liu, Huiping Li, Yang Shi and Demin Xu. IEEE Transactions on Automatic Control, 65(2): 778-785, 2020.

  17. Co-Design of Event Trigger and Feedback Policy in Robust Model Predictive Control
    Changxin Liu, Huiping Li, Yang Shi and Demin Xu. IEEE Transactions on Automatic Control, 65(1): 302-309, 2020.

  18. Robust Self-Triggered Min-Max Model Predictive Control for Discrete-Time Nonlinear Systems
    Changxin Liu, Huiping Li, Jian Gao and Demin Xu. Automatica, 89: 333-339, 2018.

Selected Conference Papers|代表性会议论文

  1. Near-Optimal Resilient Aggregation Rules for Distributed Learning Using 1-Center and 1-Mean Clustering with Outliers
    Yuhao Yi, Ronghui You, Hong Liu, Changxin Liu, Yuan Wang and Jiancheng Lv. Accepted to Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024.

  2. Delay-Agnostic Asynchronous Coordinate Update Algorithm
    Xuyang Wu, Changxin Liu, Sindri Magnusson and Mikael Johansson. In Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.

  3. Improving Fairness for Data Valuation in Horizontal Federated Learning
    Zhenan Fan, Huang Fang, Zirui Zhou, Jian Pei, Michael P. Friedlander, Changxin Liu and Yong Zhang. In Proceedings of the 38th IEEE International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, May 9-12, 2022.